Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Nat Commun ; 14(1): 745, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788206

RESUMO

Proton exchange membrane fuel cells, consuming hydrogen and oxygen to generate clean electricity and water, suffer acute liquid water challenges. Accurate liquid water modelling is inherently challenging due to the multi-phase, multi-component, reactive dynamics within multi-scale, multi-layered porous media. In addition, currently inadequate imaging and modelling capabilities are limiting simulations to small areas (<1 mm2) or simplified architectures. Herein, an advancement in water modelling is achieved using X-ray micro-computed tomography, deep learned super-resolution, multi-label segmentation, and direct multi-phase simulation. The resulting image is the most resolved domain (16 mm2 with 700 nm voxel resolution) and the largest direct multi-phase flow simulation of a fuel cell. This generalisable approach unveils multi-scale water clustering and transport mechanisms over large dry and flooded areas in the gas diffusion layer and flow fields, paving the way for next generation proton exchange membrane fuel cells with optimised structures and wettabilities.

4.
Sci Adv ; 3(4): e1603119, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28508050

RESUMO

The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly Thecla opisena that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline space-filling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient. When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template.


Assuntos
Borboletas , Retículo Endoplasmático , Membranas Intracelulares , Nanoestruturas/ultraestrutura , Pigmentos Biológicos/metabolismo , Asas de Animais , Animais , Borboletas/metabolismo , Borboletas/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , Asas de Animais/metabolismo , Asas de Animais/ultraestrutura
5.
Environ Sci Technol ; 50(10): 5172-80, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27088454

RESUMO

Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.


Assuntos
Tamanho da Partícula , Molhabilidade , Aerossóis/química , Carbono , Microscopia Eletrônica de Varredura
6.
Soft Matter ; 12(20): 4595-602, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27104854

RESUMO

Nano-patterned materials are beneficial for applications such as solar cells, opto-electronics, and sensing owing to their periodic structure and high interfacial area. Here, we present a non-lithographic approach for assembling polyelectrolytes into periodic nanoscale patterns over cm(2)-scale areas. Chemically modified block copolymer thin films featuring alternating charged and neutral domains are used as patterned substrates for electrostatic self-assembly. In-depth characterization of the deposition process using spectroscopy and microscopy techniques, including the state-of-the-art scanning transmission X-ray microscopy (STXM), reveals both the selective deposition of the polyelectrolyte on the charged copolymer domains as well as gradual changes in the film topography that arise from further penetration of the solvent molecules and possibly also the polyelectrolyte into these domains. Our results demonstrate the feasibility of creating nano-patterned polyelectrolyte layers, which opens up new opportunities for structured functional coating fabrication.

7.
Environ Sci Technol ; 49(8): 4995-5002, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25850933

RESUMO

Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission X-ray microscopy (STXM) to investigate the LLPS of micrometer-sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), α, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH's above the deliquescence point and that the majority of the organic component was located in the outer phase. The outer phase composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 70:30% organic to inorganic mix in the outer phase. These two chemical imaging techniques are well suited for in situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.


Assuntos
Aerossóis/química , Modelos Químicos , Sulfato de Amônio/química , Cicloexenos/química , Limoneno , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Material Particulado/química , Transição de Fase , Polietilenoglicóis/química , Terpenos/química
8.
J Phys Chem A ; 119(19): 4498-508, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25386912

RESUMO

Constituents of secondary organic carbon (SOC) in atmospheric aerosols are often mixed with inorganic components and compose a significant mass fraction of fine particulate matter in the atmosphere. Interactions between SOC and other condensed-phase species are not well understood. Here, we investigate the reactions of liquid-like and semisolid SOC from ozonolysis of limonene (LSOC) and α-pinene (PSOC) with NaCl using a set of complementary microspectroscopic analyses. These reactions result in chloride depletion in the condensed phase, release of gaseous HCl, and formation of organic salts. The reactions attributed to acid displacement by SOC acidic components are driven by the high volatility of HCl. Similar reactions can take place in SOC/NaNO3 particles. The results show that an increase in SOC mass fraction in the internally mixed SOC/NaCl particles leads to higher chloride depletion. Glass transition temperatures and viscosity of PSOC were estimated for atmospherically relevant conditions. Data show that the reaction extent depends on SOC composition, particle phase state and viscosity, mixing state, temperature, relative humidity (RH), and reaction time. LSOC shows slightly higher potential to deplete chloride than PSOC. Higher particle viscosity at low temperatures and RH can hinder these acid displacement reactions. Formation of organic salts from these overlooked reactions can alter particle physiochemical properties and may affect their reactivity and ability to act as cloud condensation and ice nuclei. The release and potential recycling of HCl and HNO3 from reacted aerosol particles may have important implications for atmospheric chemistry.


Assuntos
Aerossóis/química , Atmosfera/química , Carbono/química , Cloretos/química , Nitratos/química , Monoterpenos Bicíclicos , Cicloexenos/química , Difusão , Gases/química , Vidro/química , Umidade , Limoneno , Monoterpenos/química , Terpenos/química , Fatores de Tempo , Temperatura de Transição , Viscosidade
9.
Nano Lett ; 14(10): 5883-90, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25222441

RESUMO

Charge carrier dynamics in Co3O4 thin films are observed using high harmonic generation transient absorption spectroscopy at the Co M2,3 edge. Results reveal that photoexcited Co3O4 decays to the ground state in 600 ± 40 ps in liquid methanol compared to 1.9 ± 0.3 ns in vacuum. Kinetic analysis suggests that surface-mediated relaxation of photoexcited Co3O4 may be the result of hole transfer from Co3O4 followed by carrier recombination at the Co3O4-methanol interface.

10.
Rev Sci Instrum ; 84(10): 104906, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24182150

RESUMO

A new technique of high-resolution micro-Raman thermometry using anatase TiO2 microparticles (0.5-3 µm) is presented. These very high spatial resolution measurements (280 nm) reveal temperature gradients even within individual microparticles. Potential applications of this technique are demonstrated by probing the temperature distribution of a micro-fabricated heater consisting of a thin silicon nitride (Si-N) membrane with a gold coil on top of the membrane. Using TiO2 microparticle micro-Raman thermometry, the temperature from the outer edge of the coil to the inner portion was measured to increase by ~40 °C. These high spatial resolution microscopic measurements were also used to measure the temperature gradient within the 20 µm wide Si-N between the gold heating coils. 2D numerical simulations of the micro heater temperature distribution are in excellent agreement with the experimental measurements of the temperatures. These measurements illustrate the potential to extend applications of micro-Raman thermometry to obtain temperature details on a sub-micrometer spatial resolution by employing microparticles.

11.
Rev Sci Instrum ; 84(7): 073708, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23902077

RESUMO

We have designed, fabricated, and tested a compact gas-phase reactor for performing in situ soft x-ray scanning transmission x-ray microscopy (STXM) measurements. The reactor mounts directly to the existing sample holder used in the majority of STXM instruments around the world and installs with minimal instrument reconfiguration. The reactor accommodates many gas atmospheres, but was designed specifically to address the needs of measurements under water vapor. An on-board sensor measures the relative humidity and temperature inside the reactor, minimizing uncertainties associated with measuring these quantities outside the instrument. The reactor reduces x-ray absorption from the process gas by over 85% compared to analogous experiments with the entire STXM instrument filled with process gas. Reduced absorption by the process gas allows data collection at full instrumental resolution, minimizes radiation dose to the sample, and results in much more stable imaging conditions. The reactor is in use at the STXM instruments at beamlines 11.0.2 and 5.3.2.2 at the Advanced Light Source.

12.
J Synchrotron Radiat ; 18(Pt 3): 464-74, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21525656

RESUMO

A pair of techniques have been developed for performing time-resolved X-ray microdiffraction on irreversible phase transformations. In one technique capillary optics are used to focus a high-flux broad-spectrum X-ray beam to a 60 µm spot size and a fast pixel array detector is used to achieve temporal resolution of 55 µs. In the second technique the X-rays are focused with Kirkpatrick-Baez mirrors to achieve a spatial resolution better than 10 µm and a fast shutter is used to provide temporal resolution better than 20 µs while recording the diffraction pattern on a (relatively slow) X-ray CCD camera. Example data from experiments are presented where these techniques are used to study self-propagating high-temperature synthesis reactions in metal laminate foils.

13.
Nanotechnology ; 20(20): 204017, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19420665

RESUMO

Despite the promising thermodynamics and storage capacities of many destabilized metal hydride hydrogen storage material systems, they are often kinetically limited from achieving practical and reversible behavior. Such is the case with the Mg2Si system. We investigated the kinetic mechanisms responsible for limiting the reversibility of the MgH2+Si system using thin films as a controlled research platform. We observed that the reaction MgH2 + 1/2Mg2Si + H2 is limited by the mass transport of Mg and Si into separate phases. Hydrogen readily diffuses through the Mg2Si material and nucleating MgH2 phase growth does not result in reaction completion. By depositing and characterizing multilayer films of Mg2Si and Mg with varying Mg2Si layer thicknesses, we conclude that the hydrogenation reaction consumes no more than 1 nm of Mg2Si, making this system impractical for reversible hydrogen storage.


Assuntos
Cristalização/métodos , Hidrogênio/química , Hidrogênio/isolamento & purificação , Silicatos de Magnésio/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Cinética , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...